Химические свойства аренов. Общая формула и характеристика аренов. Ароматические углеводороды (арены): классификация, номенклатура и изомерия, физические свойства Какие бывают арены в химии


АРЕНЫ (ароматические углеводороды)

Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Почему "Ароматические"? Т.к. некоторые из ряда веществ имеют приятный запах. Однако в настоящее время в понятие "ароматичность" вкладывается совершенно иной смысл.

Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией π-электронов в циклической системе.

Критерии ароматичности аренов:

  1. Атомы углерода в sp 2 -гибридизованном состоянии образуют цикл.
  2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).
  3. Замкнутая система сопряженных связей содержит

    4n+2 π-электронов (n – целое число).


Этим критериям полностью соответствует молекула бензола С 6 Н 6 .

Понятие “бензольное кольцо ” требует расшифровки. Для этого необходимо рассмотреть строение молекулы бензола.

В се связи между атомами углерода в бензоле одинаковые (нет как таковых двойных и одинарных) и имеют длину 0,139нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154нм) и длиной двойной связи в алкенах (0,133 им).

Равноценность связей принято изображать кружком внутри цикла

Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения — количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.

Общая фоормула: C n H 2n-6 (n ≥ 6)

Гомологический ряд:

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

орто - (о -) заместители у соседних атомов углерода кольца, т.е. 1,2-;
мета - (м -) заместители через один атом углерода (1,3-);
пара - (п -) заместители на противоположных сторонах кольца (1,4-).

арил

C 6 H 5 - (фенил ) и C 6 H Ароматические одновалентные радикалы имеют общее название "арил ". Из них наиболее распространены в номенклатуре органических соединений два:

C 6 H 5 - (фенил ) и C 6 H 5 CH 2 - (бензил ). 5 CH 2 - (бензил ).

Изомерия:

структурная:

1) положения заместителей для ди -, три - и тетра -замещенных бензолов (например, о -, м - и п -ксилолы);

2) углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода:

3) изомерия заместителей R, начиная с R = С 2 Н 5 .

Химические свойства:

Для аренов более характерны реакции, идущие с сохранением ароматической системы , а именно, реакции замещения атомов водорода, связанных с циклом.

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированныхазотной и серной кислот):

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование ) происходит под действием алкилгалогенидов или алкенов в присутствии катализаторов AlCl 3 , AlBr 3 , FeCl 3 .



Замещение в алкилбензолах:

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом.

Например, при нитровании толуола С 6 Н 5 CH 3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола:

и облегчает замещение именно в этих положениях.

С другой стороны, под влиянием бензольного кольца метильная группа СH 3 в толуоле становится более активной в реакциях окисления и радикального замещения по сравнению с метаном СH 4 .

Толуол, в отличие от метана, окисляется в мягких условиях (обесцвечивает подкисленный раствор KMnO 4 при нагревании):

Легче, чем в алканах, протекают реакции радикального замещения в боковой цепи алкилбензолов:

Это объясняется тем, что на лимитирующей стадии легко (при невысокой энергии активации) образуются устойчивые промежуточные радикалы. Например, в случае толуола образуется радикал бензил Ċ H 2 -C 6 H 5 . Он более стабилен, чем алкильные свободные радикалы (Ċ Н 3 , Ċ H 2 R), т.к. его неспаренный электрон делокализован за счет взаимодействия с π-электронной системой бензольного кольца:



Правила ориентации

  1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.
  2. По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода .

    Ориентанты 1-го рода (орто-пара -ориентанты) направляют последующее замещение преимущественно в орто - и пара -положения.

    К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

R (+I ); - OH (+M,-I ); - OR (+M,-I ); - NH 2 (+M,-I ); - NR 2 (+M,-I ) +M-эффект в этих группах сильнее, чем -I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара -положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства:

-F (+M<–I ), -Cl (+M<–I ), -Br (+M<–I ).

Являясь орто-пара -ориентантами, они замедляют электрофильное замещение. Причина - сильный –I -эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета -ориентанты) направляют последующее замещение преимущественно в мета -положение.
К ним относятся электроноакцепторные группы:

-NO 2 (–M, –I ); -COOH (–M, –I ); -CH=O (–M, –I ); -SO 3 H (–I ); -NH 3 + (–I ); -CCl 3 (–I ).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара -положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета -положении, где электронная плотность несколько выше.
Пример:

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C 6 H 5 CH В отличие от бензола его гомологи окисляются довольно легко.

Физические свойства

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах.

Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

Бензол

C 6 H 6

5,5

80,1

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

Ксилол (диметилбензол)

С 6 Н 4 (СH 3) 2

орто-

25,18

144,41

мета-

47,87

139,10

пара-

13,26

138,35

Пропилбензол

С 6 Н 5 (CH 2) 2 CH 3

99,0

159,20

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3) 2

96,0

152,39

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

Бензол – легкокипящая ( t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Получение аренов (бензола и его гомологов)

В лаборатории

1. Сплавление солей бензойной кислоты с твёрдыми щелочами

C 6 H 5 -COONa + NaOH t → C 6 H 6 + Na 2 CO 3

бензоат натрия

2. Реакция Вюрца-Фиттинга : (здесь Г – галоген)

С 6 H 5 -Г + 2 Na + R -Г → C 6 H 5 - R + 2 Na Г

С 6 H 5 -Cl + 2Na + CH 3 -Cl → C 6 H 5 -CH 3 + 2NaCl

В промышленности

  • выделяют из нефти и угля методом фракционной перегонки, риформингом;
  • из каменноугольной смолы и коксового газа

1. Дегидроциклизацией алканов с числом атомов углерода больше 6:

C 6 H 14 t , kat →C 6 H 6 + 4H 2

2. Тримеризация ацетилена (только для бензола) – р. Зелинского :

3С 2 H 2 600° C , акт. уголь →C 6 H 6

3. Дегидрированием циклогексана и его гомологов:

Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов

C 6 H 12 t, kat →C 6 H 6 + 3H 2

C 6 H 11 -CH 3 t , kat →C 6 H 5 -CH 3 + 3H 2

метилциклогексантолуол

4. Алкилирование бензола (получение гомологов бензола) – р Фриделя-Крафтса .

C 6 H 6 + C 2 H 5 -Cl t, AlCl3 →C 6 H 5 -C 2 H 5 + HCl

хлорэтан этилбензол


Химические свойства аренов

I . РЕАКЦИИ ОКИСЛЕНИЯ

1. Горение (коптящее пламя):

2C 6 H 6 + 15O 2 t →12CO 2 + 6H 2 O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку):

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

5C 6 H 5 -C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 +28H 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

Упрощённо:

C 6 H 5 -CH 3 + 3O KMnO4 →C 6 H 5 COOH + H 2 O

Б) в нейтральной и слабощелочной до солей бензойной кислоты

C 6 H 5 -CH 3 + 2KMnO 4 → C 6 H 5 COO К + K ОН + 2MnO 2 + H 2 O

II . РЕАКЦИИ ПРИСОЕДИНЕНИЯ (труднее, чем у алкенов)

1. Галогенирование

C 6 H 6 +3Cl 2 h ν → C 6 H 6 Cl 6 (гексахлорциклогексан - гексахлоран)

2. Гидрирование

C 6 H 6 + 3H 2 t , Pt или Ni →C 6 H 12 (циклогексан)

3. Полимеризация

III . РЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм(легче, чем у алканов)

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).

1) C 6 H 5 -CH 3 + Cl 2 h ν → C 6 H 5 -CH 2 -Cl + HCl

в) гомологов бензола в присутствии катализатора

C 6 H 5 -CH 3 + Cl 2 AlCl 3 → (смесь орта, пара производных) +HCl

2. Нитрование (с азотной кислотой)

C 6 H 6 + HO-NO 2 t, H2SO4 →C 6 H 5 -NO 2 + H 2 O

нитробензол - запах миндаля !

C 6 H 5 -CH 3 + 3HO-NO 2 t, H2SO4 С H 3 -C 6 H 2 (NO 2) 3 + 3H 2 O

2,4,6-тринитротолуол (тол, тротил)

Применение бензола и его гомологов

Бензол C 6 H 6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C 6 H 5 NO 2 (растворитель, из него получают анилин), хлорбензола C 6 H 5 Cl, фенола C 6 H 5 OH, стирола и т.д.

Толуол C 6 H 5 –CH 3 – растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C 6 H 4 (CH 3) 2 . Технический ксилол – смесь трех изомеров (орто -, мета - и пара -ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C 6 H 5 –CH(CH 3) 2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С 6 Сl 6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6 – инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C 6 H 5 – CH = CH 2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

ВИДЕО-ОПЫТЫ

Ароматические соединения - циклические органические соединения, которые имеют в своём составе ароматическую систему

Нефть представляет собой сложную смесь углеводородов. Дополнительно в состав нефти входит неуглеродная часть и минеральные примеси. Углеродная часть нефти состоит из парафиновых (алканы), нафтеновых (цикланы) и ароматических (арены) углеводородов.

Ароматические углеводороды (арены) имеют моноциклические (бензол, толуол, ксилолы) или би- и полициклические (нафталин, антрацен и др.) структуры. Их содержится в нефти 10 - 20 %.

Различают одноядерные (одна бензольная группировка в молекуле) и многоядерные ароматические углеводороды, содержащие две или более бензольные группировки. В молекулах аренов в качестве боковых цепей могут находиться углеводородные радикалы с неразветвлённой или разветвлённой углеродной цепочкой, а также содержащие двойные или тройные связи и циклические группировки:

Первый и один из наиболее важных представителей гомологического ряда одноядерных ароматических углеводородов – бензол С 6 Н 6 . Отсюда и общее название гомологического ряда – ряд бензола.

Строение бензола

Общая формула моноциклических аренов C n H 2 n -6 показывает, что они являются ненасыщенными соединениями.

Такая структура молекулы бензола не объясняла многие свойства бензола:

    Для бензола характерны реакции замещения, а не присоединения, свойственные ненасыщенным соединениям. Реакции присоединения возможны, но протекают труднее, чем для алкенов.

    Бензол не вступает в реакции, являющиеся качественными реакциями на непредельные УВ (с бромной водой и раствором KMnO 4).

Физические свойства

Физические свойства аренов связаны с числом атомов углерода, наличием заместителей и расположением их в молекуле. Арены имеют более высокие температуры кипения, чем соответствующие циклоалканы. Это объясняется плотной упаковкой их молекул, (плоское кольцо), а также более сильным физико- химическим взаимодействием между молекулами вследствие наличия π-электронов.

Гомологи с рядом расположенными алкильными заместителями кипят при более высоких температурах, чем n-изомеры.

Температуры плавления аренов тем выше, чем симметричнее расположены алкильные заместители. Это объясняется тем, что асимметрия затрудняет упорядочение вещества в твёрдом состоянии.

Увеличение числа циклов сопровождается повышением температуры плавления. Появление боковых цепей снижает температуру плавления, а удлинение цепи приводит к её повышению.

Для аренов характерны максимальные среди других углеводородов плотность и показатель преломления, что используется в аналитических целях.

Кроме того, арены отличаются от других углеводородов ярко выраженной способностью избирательно растворяться в некоторых растворителях. К таким избирательным (селективным) растворителям относятся полярные жидкости: сернистый ангидрид, диметилсульфат, сульфолан, ацетон, фенол, фурфурол, диэтиленгликоль, анилин, нитробензол и др.

Химические свойства и использование

Реакции присоединения. Арены вступают в реакции присоединения с большим трудом.

Реакции замещения наиболее характерны для аренов. Они протекают в сравнительно мягких условиях. Особенно легко вступают в реакции замещения гомологи бензола.

Галоидирование . В зависимости от условий галоидирования можно получить продукты различной степени замещения:

Сульфирование . Концентрированная серная кислота легко замещает водород на остаток серной кислоты с образованием сульфокислоты.

Эта реакция протекает количественно и может служить одним из способов определения содержания аренов в нефтяных фракциях.

Из бензолсульфокислоты и хлорбензола сплавлением их со щёлочью получают фенол.

Основная область применения фенола - производство фенолформальдегидных смол.

Нитрование . При действии на бензол смесью концентрированных азотной и серной кислот получается нитробензол:

Восстановлением нитробензола получают анилин:

Большая часть анилина используется для производства полиуретановых пенопластов.

При полном нитровании толуола получают взрывчатое вещество тротил (2,4,6-тринитротолуол):

Алкилирование . В присутствии таких катализаторов как АlCl 3 , HF, H 2 SO 4 , HCl, BF 3 арены вступают в реакцию алкилирования с алкенами, спиртами, галоидзамещёнными алканами. Таким способом в промышленности получают этилбензол и изопропилбензол:

Каталитическим дегидрированием из этилбензола получают стирол, а из изопропилбензола - -метилстирол - ценные мономеры, используемые в производстве каучуков и пластмасс:

Деалкилирование и гидродеалкилирование. В связи с тем, что наибольшее значение имеет бензол, его в настоящее время получают деалкилированием или гидродеалкилированием толуола:

Конденсация с формальдегидом . В присутствии концентрированной серной кислоты арены конденсируются с формальдегидом с образованием нерастворимого осадка бурого цвета:

Эту реакцию применяют для аналитического определения аренов в нефтяных фракциях.

Окисление . Арены (кроме бензола, нафталина и других голоядерных гомологов) легко вступают в реакции окисления. В ряду алкилпроизводных аренов устойчивость к окислению падает с увеличением длины и степени разветвления боковой цепи. При этом образуются кислые соединения. Эти свойства аренов широко используются в промышленности для получения кислородсодержащих производных:

С целью получения терефталевой кислоты разработаны также различные процессы окисления толуола. Наиболее устойчивыми к окислению кислородом воздуха являются бензол и нафталин. Однако и они в очень жёстких условиях (высокая температура, катализатор) окисляются с разрывом бензольного кольца:

Терефталевая кислота - полупродукт для производства синтетического полиэфирного волокна - лавсана (терилена). Фталевый ангидрид применяется для производства алкидных и полиэфирных смол, пластификаторов, репеллентов. Малеиновый ангидрид используется в производстве полиэфирных смол и присадок к смазочным маслам.

Образование комплексов с пикриновой кислотой. Полициклические арены (нафталин, антрацен и их гомологи) легко образуют комплексные соединения с пикриновой кислотой (2,4,6 - тринитрофенол) – пикраты.

Бензол и его гомологи не образуют стабильных комплексов и могут служить растворителями при комплексообразовании.

Пикраты ароматических углеводородов представляют собой твёрдые кристаллические вещества жёлтого цвета, имеющие чёткие температуры плавления. Каждому полициклическому углеводороду соответствует пикрат с определённой температурой плавления. По температуре плавления пикрата модно идентифицировать полициклический ароматический углеводород.

Комплексообразование с пикриновой кислотой используется как метод выделения полициклических ароматических углеводородов. Пикраты легко разлагаются горячей водой. Пикриновая кислота растворяется в воде, а полициклические ароматические углеводороды выделяются в свободном виде.

2.4.4. Углеводороды смешанного стороения

Высококипящие фракции нефти главным образом состоят в основном из углеводородов смешанного (гибридного) строения. Это полицикличекие углеводороды, молекулы которых содержат циклоалкановые структуры, конденсированные с аренами.

В керосино-газойлевых фракциях содержатся простейшие гибридные бициклические углеводороды и их гомологи:

Ареновые циклы гибридных углеводородов имеют преимущественно короткие (метильные или этильные) заместители, циклоалкановые кольца – один или два довольно длинных алкильных заместителя. Особенно много гибридных углеводородов в масляных фракциях. Строение их изучено мало.

Гибридные углеводороды являются нежелательными компонентами смазочных масел, поскольку они ухудшают вязкостные свойства и уменьшают стабильность их против окисления.

2.4.5. Арены нефти, влияние на свойства нефтепродуктов,

применение

Арены являются желательными компонентами карбюраторных топлив, так как обладают высокими октановыми числами (толуол -103, этилбензол - 98).

Присутствие аренов в значительных количествах в дизельном и реактивном топливах ухудшает условие сгорания, и поэтому крайне нежелательно.

Полициклические арены с короткими боковыми цепями ухудшают эксплуатационные свойства масел и поэтому они из них удаляются.

Арены являются ценным сырьём для нефтехимического синтеза, при производстве синтетических каучуков, пластмасс, синтетических волокон, анилино-красочных и взрывчатых веществ, фармацевтических препаратов. Наибольшее значение имеют бензол, толуол, ксилолы, этилбензол, нафталин.

Ароматические химические соединения, или арены, представляют собой большую группу карбоциклических соединений, в молекулах которых содержится устойчивый цикл из шести углеродных атомов. Она носит название «бензольное кольцо» и обуславливает особые физические и химические свойства аренов.

К ароматическим углеводородам относится в первую очередь бензол и всевозможные его гомологи и производные.

В молекулах аренов может содержаться несколько бензольных колец. Такие соединения называют многоядерными ароматическими соединениями. Например, нафталин - всем известный препарат для защиты шерстяных изделий от моли.

Бензол

Этот простейший представитель аренов состоит только из бензольного кольца. Его молекулярная формула С 6 Η 6 . Структурную формулу молекулы бензола чаще всего представляют циклической формой, предложенной А. Кекуле в 1865 году.

Достоинством этой формулы является верное отражение состава и равноценности всех атомов С и Н в кольце. Однако она не могла объяснить многих химических свойств аренов, поэтому утверждение о наличии трех сопряженных двойных связей С=С является ошибочным. Это стало известно лишь с появлением современной теории связей.

Между тем и сегодня часто встречается написание формулы бензола способом, предложенным Кекуле. Во-первых, с ее помощью удобно записывать уравнения химических реакций. Во-вторых, современные химики видят в ней лишь символ, а не реальную структуру. Строение молекулы бензола сегодня передают различными типами структурных формул.

Строение бензольного кольца

Главной особенностью бензольного ядра можно назвать отсутствие в нем одинарных и двойных связей в традиционном понимании. В соответствии с современными представлениями молекула бензола представляется плоским шестиугольником с длинами сторон равными 0,140 нм. Получается, что длина связи С-С в бензоле является промежуточным значением между одинарной (ее длина 0,154 нм) и двойной (0,134 нм). В той же плоскости лежат и связи С-Н, образующие с ребрами шестиугольника угол в 120°.

Каждый атом С в структуре бензола находится в sp2-гибридном состоянии. Он соединен посредством трех своих гибридных орбиталей с двумя атомами С, расположенными по соседству, и одним атомом Н. То есть образует три s-связи. Еще одна, но уже негибридизованная его 2р-орбиталь, перекрывается с такими же орбиталями соседних атомов С (справа и слева). Ось ее перпендикулярна плоскости кольца, а значит перекрывание орбиталей происходит над и под ней. При этом образуется общая замкнутая π-электронная система. Из-за равнозначного перекрывания 2р-орбиталей шести атомов С происходит своего рода «уравнивание» связей С-С и С=С.

Результатом этого процесса является сходство таких «полуторных» связей и с двойными, и с одинарными. Этим объясняется тот факт, что проявляют арены химические свойства, характерные и для алканов, и для алкенов.

Энергия углерод-углеродной связи в бензольном кольце равняется 490 кДж/моль. Что также является также средней величиной между энергиями простой и кратной двойной связи.

Номенклатура аренов

Основой названий ароматических углеводородов является бензол. Атомы в кольце нумеруют со старшего заместителя. Если же заместители равнозначны, то нумерацию осуществляют по кратчайшему пути.

Для многих гомологов бензола часто используют тривиальные названия: стирол, толуол, ксилол и т. д. Для отражения взаимного расположения заместителей принято использовать приставки οртο-, мета-, пара-.

Если в молекуле имеются функциональные группы, например, карбонильная или карбоксильная, то молекулу арена рассматривают как соединенный с ней ароматический радикал. Например, -С 6 Η 5 - фенил, -C 6 Η 4 - фенилен, С 6 Η 5 —СΗ 2 — - бензил.

Физические свойства

Первые представители в гомологическом ряду бензола - это бесцветные жидкости, имеющие специфичес-кий запах. Их вес легче воды, в которой они практически не растворяются, но хорошо растворяются в большинстве органических растворителей.

Все ароматические углеводороды горят с появлением коптящего пламени, что объясняется высоким содержанием С в молекулах. Температуры плавления и кипения их повышаются с увеличением значений молекулярных масс в гомологическом ряду бензола.

Химические свойства бензола

Из разнообразных химических свойств аренов реакции замещения следует упомянуть отдельно. Также весьма значимы некоторые реакции присоединения, осуществляющиеся в особых условиях, и процессы окисления.

Реакции замещения

Довольно подвижные π-электроны бензольного кольца, способны очень активно реагировать с атакующими электрофилами. В таком электрофильном замещении участвует само бензольное ядро в бензоле и связанная с ним углеводородная цепь в его гомологах. Механизм этого процесса довольно подробно изучен органической химией. Химические свойства аренов, связанные с атакой электрофилов, проявляются посредством трех стадий.

  • Первая стадия. Появление π-комплекса из-за связывания π-электронной системы бензольного ядра с частицей Х + , которая связывается с шестью π-электронами.

Бромирование бензола в присутствии бромидов железа или алюминия без нагревания приводит к получению бромбензола:

C 6 Η 6 + Br 2 —> C 6 Η 5 -Br + ΗBr.

Нитрование смесью азотной и серной кислот приводит к получению соединений с нитрогруппой в кольце:

C 6 Η 6 + ΗONO 2 —> C 6 Η 5 —NO 2 + Η 2 O.

Сульфирование осуществляется бисульфониевым ионом, образующимся в результате реакции:

3Η 2 SO 4 ⇄ SO 3 Η + + Η 3 O + + 2ΗSO 4 - ,

или триоксид серы.

Соответствует данному химическому свойству аренов реакция:

C 6 H 6 + SO 3 H + —> C 6 H 5 —SO 3 H + H + .

Реакции алкильного и ацильного замещения, или реакции Фриделя-Крафтса, проводят в присутствии безводного AlCl 3 .

Эти реакции маловероятны для бензола и протекают с трудом. Присоединение галогеноводородов и воды к бензолу не происходит. Однако при очень высоких температурах в присутствии платины возможна реакция гидрирования:

С 6 Η 6 + 3Н 2 —> С 6 Н 12 .

При облучении ультрафиолетом к молекуле бензола могут присоединиться молекулы хлора:

С 6 Η 6 + 3Cl 2 —> C 6 Η 6 Cl 6 .

Реакции окисления

Бензол весьма устойчив к окислителям. Так, он не обесцвечивает розовый раствор перманганата калия. Однако в присутствии оксида ванадия он может окисляться кислородом воздуха до малеиновой кислоты:

С 6 Н 6 + 4О —> СООΗ-СΗ=СΗ-СООΗ.

На воздухе бензол горит с появлением копоти:

2C 6 Η 6 + 3O2 → 12C + 6Η 2 O.

Химические свойства аренов

  1. Замещение.

Правила ориентации

Какое именно положение (о-, м- или п-) займет заместитель в ходе взаимодействия электрофильного агента с бензольным кольцом определяется правилами:

  • если в бензольном ядре уже имеется какой-либо заместитель, то именно он направляет входящую группу в определенное положение;
  • все ориентирующие заместители делят на две группы: ориентанты первого рода направляют поступающую группу атомов в орто- и пара-положения (—NΗ 2 , —ОΗ,—СΗ 3 , —С 2 Н 5 , галогены); ориентанты второго рода направляют вступающие заместители в мета-положение (—NO 2 , —SO 3 Η, —СΗО, —СООΗ).

Ориентанты здесь указаны в порядке уменьшения направляющей силы.

Стоит отметить, что такое разделение заместителей группы является условным, из-за того, в большинстве реакций наблюдается образование всех трех изомеров. Ориентанты же влияют лишь на то, какой из изомеров будет получен в большем количестве.

Получение аренов

Основными источниками аренов являются сухая перегонка каменного угля и нефтепереработка. В каменноугольной смоле содержится огромное количество всевозможных ароматических углеводородов. В некоторых сортах нефти содержится до 60% аренов, которые несложно выделить простой перегонкой, пиролизом или крекингом.

Способы синтетического получения и химические свойства аренов зачастую бывают взаимосвязаны. Бензол, как и его гомологи, получают одним из следующих способов.

1. Риформинг нефтепродуктов. Дегидрирование алканов - важнейший промышленный способ синтеза бензола и многих его гомологов. Реакцию ведут при пропускании газов над нагретым катализатором (Pt, Cr 2 O 3 , оксиды Mo и V) при t = 350-450 о С:

С 6 Н 14 —> С 6 Η 6 + 4Η 2 .

2. Реакция Вюрца-Фиттига. Она осуществляется через стадию получения металлорганических соединений. В итоге реакции возможно получение нескольких продуктов.

3. Тримеризация ацетилена. Сам ацетилен, как и его гомологи способны образовывать арены при нагревании с катализатором:

3С 2 Η 2 —> С 6 Η 6 .

4. Реакция Фриделя-Крафтса. Выше уже был рассмотрен в химических свойствах аренов способ получения и превращения гомологов бензола.

5. Получение из соответствующих солей. Бензол можно выделить при перегонке солей бензойной кислоты со щелочью:

C 6 Η 5 —COONa + NaOΗ —> C 6 Η 6 + Na 2 CO 3 .

6. Восстановлением кетонов:

C 6 Η 5 -CO-CΗ 3 + Zn + 2ΗCl —> C 6 Η 5 -CΗ 2 -CΗ 3 + Η 2 O + ZnCl 2 ;

CΗ 3 -C 6 Η 5 -CO-CΗ 3 + NΗ 2 -NΗ 2 —> CΗ 3 -C 6 Η 5 -CΗ 2 -CΗ 3 + Η 2 O.

Применение аренов

Химические свойства и области применения аренов имеют прямую взаимосвязь, поскольку основная часть ароматических соединений идет для дальнейшего синтеза в химическом производстве, а не используется в готовом виде. Исключение составляют вещества, применяемые в качестве растворителей.

Бензол С 6 Η 6 применяется по большей части в синтезе этилбензола, кумола и циклогексана. На его основе получают полупродукты для изготовления различных полимеров: каучуков, пластмасс, волокон, красителей, ПАВ, инсектицидов, лекарств.

Толуол С 6 Н 5 -СН 3 используют при производстве красителей, лекарств и взрывчатых веществ.

Ксилолы С 6 Η 4 (СΗ 3) 2 в смешанном виде (технический ксилол) применяются в качестве растворителя или исходного препарата для синтеза органических веществ.

Изопропилбензол (или кумол) С 6 Η 4 -СΗ(СΗ 3) 2 является исходным реагентом для синтеза фенола и ацетона.

Винилбензол (стирол) C 6 Η 5 -CΗ=СΗ 2 является сырьем для получения важнейшего полимерного материала - полистирола.

Основные источники получения – нефть и продукты сухой перегонки (коксования) каменного угля. Выделение ароматических углеводородов из каменноугольной смолы – наиболее старый и до 50-х годов основной способ их получения. При нагревании выше 1000 ºС без доступа воздуха уголь разлагается с образованием твердых (кокс), жидких (каменноугольная смола, аммиачная вода) и газообразных (коксовые газы) продуктов перегонки.

Кокс – в основном углерод; применяется в металлургии.

Газы коксования – H 2 , CH 4 , CO, CO 2 , N 2 , этиленовые углеводороды.

Каменноугольная смола – содержит большое количество органических соединений различной природы. Выход смолы около 3 %. На первом этапе ее перегоняют на 4 фракции (табл. 11).

Т а б л и ц а 11

Основные фракции каменноугольной смолы

Остаток от перегонки (60 %) называется пеком. Это твердая, размягчающаяся при нагревании масса темного цвета.

Из перечисленных фракций разнообразными приемами выделяются индивидуальные органические соединения.

В некоторых видах нефти содержание ароматических углеводородов достигает 60 %. Тем не менее основное их количество получается из нефти при химической переработке (ароматизации нефти) – пиролизе и каталитическом риформинге, в ходе которого протекают реакции дегидрирования (а) и дегидроциклизации (б):

(а)
;

циклогексан бензол

н-гексан бензол

Синтетический способ получения бензола – тримеризация ацетилена (см. разд. 5.2.5). Гомологи бензола получают алкилированием по методу Фриделя–Крафтса (разд. 6.2.1) или по методу Вюрца–Фиттига:

бромбензол бутилбромид бутилбензол

(Р. Фиттиг в 1864 г. распространил реакцию Ш. Вюрца на ароматические углеводороды для алкирования и ацилирования бензола).

Области использования аренов чрезвычайно разнообразны.

Бензол, толуол, ксилолы – широко применимые органические растворители и основа многотоннажных органических синтезов – красителей, взрывчатых веществ (ТНТ), пластмасс (полистирол, лавсан), лекарств, средств защиты растений и др.

Список литературы

1. Нечаев А.П., Еременко Т.В. Органическая химия: Учеб. для пищ. ин–тов. – М.: Высшая школа, 1985. – 463 с.

2. Нечаев А.П. Органическая химия: Учеб. для сред. спец. учеб. заведений по пищ. спец. – 2–е изд., перераб. и доп. – М.: Высшая школа, 1988. – 318 с.

3. Артеменко А.И. Органическая химия: Учеб. для строит. спец. вузов. – 3-е изд., перераб. и доп. – М.: Высшая школа, 1994. – 500 с.

4. Грандберг И.И. Органическая химия: Учеб. пособие для с/х вузов. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1980. – 463 с.

5. Каррер П. Курс органической химии. 2-е изд. – Л.: Госхимиздат, 1962. – 1216 с.

6. Робертс Дж., Касерио М. Основы органической химии. – М.: Мир, 1968. – Ч. 1. – 592 с.; 1968. – Ч. 2. – 550 с.

7. Кан Р., Дермер О. Введение в химическую номенклатуру. – М.: Химия, 1983. – 224 с.

8. Волков В.А. Вонский Е.В., Кузнецова Г.И. Выдающиеся химики мира: Биографический справочник. – М.: Высшая школа, 1991.

9. Краткая химическая энциклопедия. – М.: Сов. энциклопедия, 1961. – Т. 1. – 1262 с.; 1963. – Т. 2. – 1086 с.; 1964. – Т. 3. – 1112 с.; 1965. – Т. 4. – 1182 с.; 1967. – Т. 5. – 1184 с.

10. Чмутов К.В. Хромотография. – М.: Химия, 1978. – 128 с.

11. Азимов А. Мир углерода. – М.: Химия, 1978. – 208 с.

12. Щульпин Г.Б. Эта увлекательная химия. – М.: Химия, 1984. – 184 с.

13. Эммануэль Н.М., Заиков Г.Е. Химия и пища. – М.: Наука, 1986. – 173 с.